Closed-form solutions for continuous time random walks on finite chains.

نویسندگان

  • Ophir Flomenbom
  • Joseph Klafter
چکیده

Continuous time random walks (CTRWs) on finite arbitrarily inhomogeneous chains are studied. By introducing a technique of counting all possible trajectories, we derive closed-form solutions in Laplace space for the Green's function (propagator) and for the first passage time probability density function (PDF) for nearest neighbor CTRWs in terms of the input waiting time PDFs. These solutions are also the Laplace space solutions of the generalized master equation. Moreover, based on our counting technique, we introduce the adaptor function for expressing higher order propagators (joint PDFs of time-position variables) for CTRWs in terms of Green's functions. Using the derived formula, an escape problem from a biased chain is considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deterministic and Metaheuristic Solutions for Closed-loop Supply Chains with Continuous Price Decrease

In a global economy, an efficient supply chain as a main core competency empowers enterprises to provide products or services at the right time in the right quantity, at a low cost. This paper is to plan a single product, multi-echelon, multi-period closed loop supply chain for high-tech products (which have continuous price decrease). Ultimately, considering components rated to procurement, pr...

متن کامل

Random walks on directed Cayley graphs

Previous authors have shown bounds on mixing time of random walks on finite undirected Cayley graphs, both with and without self-loops. We extend this to the most general case by showing that a similar bound holds for walks on all finite directed Cayley graphs. These are shown by use of two new canonical path theorems for mixing time of non-reversible Markov chains. The first result is related ...

متن کامل

Random Walks on Finite Quantum Groups

1 Markov chains and random walks in classical probability . . 3 2 Quantum Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Random walks on comodule algebras . . . . . . . . . . . . . . . . . . . . . . 7 4 Random walks on finite quantum groups . . . . . . . . . . . . . . . . . . 11 5 Spatial Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

Determination of hysteresis in finite-state random walks using Bayesian cross validation

Consider the problem of modeling hysteresis for finite-state random walks using higher-order Markov chains. This Letter introduces a Bayesian framework to determine, from data, the number of prior states of recent history upon which a trajectory is statistically dependent. The general recommendation is to use leave-one-out cross validation, using an easily-computable formula that is provided in...

متن کامل

Two conductance theorems, two canonical path theorems, and two walks on directed Cayley graphs

We show two Conductance-like theorems for mixing time of non-reversible non-lazy walks. These bounds involve a measure of expansion which expresses how well ergodic flow is distributed among vertices, which while conceptually similar to Blocking Conductance apply to non-lazy non-reversible Markov chains as well. As an application we derive two canonical path theorems for mixing time of non-reve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 95 9  شماره 

صفحات  -

تاریخ انتشار 2005